零域
  • 首页
  • 归档
  • 标签
  • 分类
  • 友链
  • HAO
  • 首页
  • 归档
  • 标签
  • 分类
  • 友链
  • HAO
  • 「SF-LC」4 Poly

    The critical new ideas arepolymorphism (abstracting functions over the types of the data they manipulate) andhigher-order fu...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」3 List

    Pair of NumbersQ: Why name inductive?A: Inductive means building things bottom-up, it doesn’t have to self-referencial (recur...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」5 Tactics

    apply exactly the same as some hypothesis can be used to finish a proof (shorter than rewrite then reflexivity) It also work...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」6 Logic

    We have seen… propositions: factual claims equality propositions (e1 = e2) implications (P → Q) quantified propositions (∀ x...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」7 Ind Prop

    Inductively Defined Propositions The 3rd way to state Evenness…Besides: 123Theorem even_bool_prop : ∀n, evenb n = true ↔ ∃k...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」8 Maps

    useful as env Map == Dictionary building data structure. use of reflection to streamline proofs. Two flavors of...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」9 ProofObjects

    “Algorithms are the computational content of proofs.” —Robert Harper So the book material is designed to be gradually revea...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」11 Rel

    relation 与injective/surjective/bijective function 等相关的知识在 5. Tactics 里,为了避免每次都要 grep 我在这里写一下。 RelationsRecalling ...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」10 IndPrinciples

    Basic 每次我们使用 Inductive 来声明数据类型时,Coq 会自动为这个类型生成 _归纳原理_。Every time we declare a new Inductive datatype, Coq automatically gener...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
  • 「SF-LC」12 Imp

    123456Z ::= X;;Y ::= 1;;WHILE ~(Z = 0) DO Y ::= Y * Z;; Z ::= Z - 1END A weird convention through out all IMP is: a-: ari...
      2023-02-02  
    • LF (逻辑基础) 
    • | SF (软件基础) 
    • | Coq 
    • | 笔记 
    阅读全文 
上一页 下一页
© 2014 - 2023    Pin Young
访问人数   总访问量 
由 Hexo 驱动 | 主题 零域Lite 1.1

津公网安备 12011002021027号

津ICP备2021004482号-1