题目描述
给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。
例如,从根到叶子节点路径 1->2->3 代表数字 123。计算从根到叶子节点生成的所有数字之和。
说明: 叶子节点是指没有子节点的节点。
示例 1:
1 | 输入: [1, 2, 3] |
示例 2:
1 | 输入: [4, 9, 0, 5, 1] |
给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。
例如,从根到叶子节点路径 1->2->3 代表数字 123。计算从根到叶子节点生成的所有数字之和。
说明: 叶子节点是指没有子节点的节点。
示例 1:
1 | 输入: [1, 2, 3] |
示例 2:
1 | 输入: [4, 9, 0, 5, 1] |
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
1 | struct Node { |
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。初始状态下,所有 next 指针都被设置为 NULL。
示例:
输入:{“$id”:”1”,”left”:{“$id”:”2”,”left”:{“$id”:”3”,”left”:null,”next”:null,”right”:null,”val”:4},”next”:null,”right”:{“$id”:”4”,”left”:null,”next”:null,”right”:null,”val”:5},”val”:2},”next”:null,”right”:{“$id”:”5”,”left”:{“$id”:”6”,”left”:null,”next”:null,”right”:null,”val”:6},”next”:null,”right”:{“$id”:”7”,”left”:null,”next”:null,”right”:null,”val”:7},”val”:3},”val”:1}
输出:{“$id”:”1”,”left”:{“$id”:”2”,”left”:{“$id”:”3”,”left”:null,”next”:{“$id”:”4”,”left”:null,”next”:{“$id”:”5”,”left”:null,”next”:{“$id”:”6”,”left”:null,”next”:null,”right”:null,”val”:7},”right”:null,”val”:6},”right”:null,”val”:5},”right”:null,”val”:4},”next”:{“$id”:”7”,”left”:{“$ref”:”5”},”next”:null,”right”:{“$ref”:”6”},”val”:3},”right”:{“$ref”:”4”},”val”:2},”next”:null,”right”:{“$ref”:”7”},”val”:1}
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
提示:
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组 并在使用 O(1) 额外空间的条件下完成。
示例1:
给定数组 nums = [1, 1, 2],
函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。 你不需要考虑数组中超出新长度后面的元素。
示例2:
给定 nums = [0, 0, 1, 1, 1, 2, 2, 3, 3, 4],
函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。你不需要考虑数组中超出新长度后面的元素。
说明:
为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:
1 | // nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝 |